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Abstract: The estimation risk of the covariance matrix in portfolio
selection often leads to poor out-of-sample performance, especially when
the number of assets is large compared to the observation period.
Shrinking the covariance matrix to a particular target which often
based on financial theory has been used to reduce the standard errors
of the estimates. In this paper, we propose to shrink the off-diagonal
elements of the inverse covariance matrix to zeros in the estimation of
the covariance matrix, the sparsity structure of the inverse covariance
matrix imply that some of the assets are conditionally independent.
Simulation study and empirical data analysis show that the new
strategy based on sparse inverse covariance constraints often perform
better than strategies with existing shrinkage estimates in terms of
out-of-sample Sharpe ratio, variances and turnovers. In addition, the
algorithm and the convergence rate of arriving the sparsity structure
in the inverse covariance matrix has been provided.

Keywords: Portfolio selection, Estimation risk, Inverse covariance,
Sparsity, Conditional independence.
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1. Introduction

In the Mean Variance (MV) portfolio optimization model pioneered by
Markowitz (1952), the mean and covariances of the asset returns are
unknown parameters. Traditional econometric method is to estimate those
parameters from historical data, then plug the estimates into the MV
framework to derive the optimal portfolio weights. It has been found that
replacing true parameters by their sample estimates may result in poor
out-of-sample performance of Markowitz portfolio (for example, see
Demiguel et al.. (2009b); Brandt (2009); Michaud (1989); Jobson and Korkie
(1980)). Merton (1980) pointed out that it is more difficult to estimate means
than estimating covariances of asset returns. Jagannathan and Ma (2003)
reported that the portfolios are often efficient if one minimizes the portfolio
variance by ignoring the constraint on means of the assets. Kourtis, Dotsis
and Markellos (2012) reaffirmed the appeal of Global Minimum Variance
(GMV) portfolio which only based on covariance matrix estimates to the
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Mean Variance (MV) portfolio by analyzing the opportunity cost of both
portfolios. We therefore focus only on the problem of GMV portfolio, but
our method can be easily extended to MV portfolio.

The error of sample covariance may have large effect on the GMV
portfolio performance, particulary so in situations with a large number of
assets. As exemplified in Fan et al.. (2009)), for 2000 candidate assets, the
covariance matrix involves over 2,000,000 parameters needing to be
estimated, even each element in the covariance matrix is estimated with
the accuracy of order O(T–0.5) which is 0.05 if sample size T = 400 (1.5 years’
daily data), the aggregated error could be very large resulting in devastating
effect in portfolio selection. Three types of approaches have been proposed
to solve the problem. The first is to use a factor structure for the asset returns
to reduce the number of free parameters. Sharpe (1963) estimated the
covariance matrix by using a single-factor market model, which reduces
the number of parameters to be estimated dramatically. However, a single
factor may not capture all of the covariations among the assets, resulting
the estimated covariance matrix systematically biased. Multi-factor models
were applied to overcome this drawback, but there is no consensus on the
number and specification of the factors. It could be based on the economic
theory, as implied by CAPM (Sharpe (1963)), ICAPM (Merton (1980)), or
based on empirical work, like macroeconomic factors, industry factors,
firm-characteristic-based factors and combined thereof (Chen et al.. (1986);
Fama and French (1993)), or based on statistical procedure, like factor
analysis or principal components analysis (Connor and Korajczyk (1998)).
Chan et al. (1999) compared performance of different factor models in
portfolio optimization problem and found that there was no clear favorite
model specifications. The second method for improving the estimation of
covariances matrix is to use the convex combinations of the classical sample
estimator and a shrinkage target. The shrinkage targets could be an indentity
matrix, the covariance matrix corresponding to a single or multi-factor
model, or a covariance matrix with equal correlations (for example, see
Frost and Savarino (1986); Ledoit and Wolf (2003)). Motivated by the fact
that GMV optimal portfolio weights depend on the inverse covariance
matrix, Kourtis, Dotsis and Markellos (2012) shrank the inverse covariance
matrix directly instead of the covariance matrix. They proposed a linear
combination of the traditional estimator of the inverse covariance matrix
and a target matrix. The targets include the identity, the inverse covariance
matrix generated by the 1-factor model of Sharpe (1963) and a weighted
sum of these two matrices. Besides the above two types of methods, the
third method to reduce the estimation error risk of parameters on the



Portfolio Selection with Sparse Inverse Covariance Matrices 117

portfolio optimization is to impose constraints on the portfolio weights
(for example, see Jagannathan and Ma (2003); Demiguel et al. (2009a)).
Jagannathan and Ma (2003) proved that certain constraints on the portfolio
weights was equivalent to a form of shrinkage estimation of covariances
matrix.

Too little structure assumption on the covariation among the asset
returns leads to poor performance of the estimator in small samples.
Imposing some structure on the estimator is a natural cure. Particular forms
of the structure in the above shrinkage estimation are based on financial
theory, which have economic interpretations and are very familiar to
financial academia, therefore they are easier to be accepted. However, there
is no consensus on the identity and the number of factors, choosing a factor
model is an art. Here we propose to shrink the off-diagonal elements of the
inverse covariance matrix to zeros. It can be proved that under the
assumption of multivariate normally distributed among the asset returns,
the zeros of the inverse covariance imply that the corresponding asset
returns are independent given the other asset returns, which is called
conditional independence (Dawid (1980)). Besides simplifying the structure
of the covariation among asset returns, conditional independence properties
can be inspected visually by probabilistic graphical models. The asset
returns is represented by nodes in the graph model, some of them are
connected by links. The graph provides a visual way of understanding the
joint distribution of the asset returns. In graph models, the absence of a
link between two nodes means that two corresponding returns are
conditionally independent given the other asset returns in the graph. It
makes sense to constrain some returns to be of conditional independence
which play an important role in pattern recognition and machine learning.
Simulations and empirical data analysis show that sparse inverse covariance
constraints reduce the estimation error of the covariance matrix, leading
the resultant portfolio often have relatively better out-of-sample
performance in terms of Sharpe ratios, variances and turn-overs than
strategies with existing shrinkage covariance and inverse covariance
estimates ((Ledoit and Wolf 2003, 2004), Kourtis, Dotsis and Markellos
(2012)).

The rest of this article is organized as follows. In section 2, we propose
a new GMV portfolio strategy by shrinking the off-diagonal elements of
the inverse covariance matrix to zeros in the estimation of covariance matrix.
In section 3, we prove some properties of the proposed portfolio strategies.
In section 4, we compare the out-of-sample performance of the new strategy
to some existing methods by simulation study and empirical data analysis.
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Section 5 is the conclusion. Proofs of the propositions and details of the
algorithm are available in Appendices.

2. Method

2.1. Imposing Constraints

Let w = (w1, ...., wN)�  be the vector of portfolio weights, � be the covariance
matrix of the asset returns. Then, the Global Minimum Variance (GMV)
portfolio strategy can be formulated as follows,

min ,
w

w w�� (1)

s.t. w�1 = 1, (2)

In order to control the estimation risk of the covariance matrix which
play an important role in the GMV framework, we constrain the L1 norm of
the inverse covariance matrix in the estimation of the covariance matrix.
Specifically, let � = �–1, S be the empirical covariance matrix, the problem
is to maximize the penalized log-likelihood

log det� – tr(S �) –������1 (3)

over nonnegative definite matrices �. Here, tr denotes the trace, �����1 is the
L1 norm or the sum of the absolute values of the elements of �–1 and � is the
penalty coefficient. With the increment of �, we will get sparse inverse
covariance matrix estimator. It can be proved that under some assumptions
the zeros in the inverse covariance matrix imply that the corresponding
two returns are conditionally independent. To be more specific, we assume
that the asset returns have a multivariate Gaussian distribution with mean
��and covariance matrix �. The Gaussian distribution has a property that
the inverse covariance matrix �–1 contains information about the partial
covariances which is the covariances between two returns given the other
returns. Specifically, if the ij th component of �–1 is zero, then the i th and the
j th asset return are conditionally independent given the other returns. So it
makes sense to impose an L1 penalty on �–1 to increase its sparsity.

In addition, the conditional independence can be visually checked by
undirected probabilistic graphical models. In (undirected) graphical models,
each node or vertex represents the future return of an asset, and each edge
joining some pairs of the nodes (vertices) indicates the correlations among
the asset returns. The absence of an edge between two nodes means that
the corresponding two returns are conditionally independent given the
other asset returns. Figure 1 gives an example of a graphical model for 10
assets. The absence of the edge between node 1 and node 4 denotes that
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returns for asset 1 and asset 4 are conditionally independent given other
asset returns. And the shorthand notation for conditionally independence
is as follows, X1 � X4�rest. Asset 9 is isolated, meaning asset 9 has nothing
to do with other assets given other asset returns.

Friedman et al. (2007) developed an algorithm which is called graphical
lasso to solve the convex optimization problem (3), the details of the
algorithm can be found in Appendix A.

2.2. Structure Calibration

Graphical model gives a visual way of understanding the joint distribution
of the entire set of asset returns. Sparse graphs are preferred for their
simplified structures and resultant easy interpretations. In order to
determine how sparse or which edge should be omitted from the graph,
we can change the values of the penalty coefficient Á in expression (3) based
on cross validation method.

To be more specific, let � be the estimation window width, it usually
sets to be 60 months, 120 months, or 180 months sample returns. We delete
the i th (1 ��i ���) observation from the estimation sample first, then calculate
the covariance matrix estimate based on the � – 1 sample and a given �
according to equation (3), then substitute �̂  into equation (1) and equation

Figure 1: Undirected Graph Model for 10 Assets
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(2) to get portfolio weights, finally calculate the out-of-sample mean
(variance, Sharpe ratio) by using the deleted i th observation. As did in
DeMiguel (2009), the out-of-sample mean, variance and Sharpe ratio are
defined as follows:

�̂ = ( )
1

1 ˆ ,i i
i

w r
�

���
�

(4)

2�̂ = 
2

( )
1

1 ˆ ˆ( ) ,
1 i i

i

w r
�

�

� �
� � � �

(5)

�SR = 
ˆ
ˆ
�
�

(6)

where ( )ˆ iw  is calculated based on � – 1 sample returns without the i th

sample. Note that these quantities are based on the tuning parameter �,
we chose � to get the best out-of-sample performance, that is to say,
maximum out-of-sample mean or sharp ratio, or minimum out-of-sample
variance.

3. Properties

We will show in this section the properties of new portfolio strategy based
on the shrinkage inverse covariance matrix estimator.

Proposition 1: In our proposed framework consists of expression (1),
(2) and (3), Markowitz strategy of GMV portfolio is obtained by setting � =
0, while adjusted 1/N strategy is reached by � = �.

This proposition shows that two popular strategies can be derived from
our framework by changing the values of penalty coefficient. If � = 0, then
there is no constraint on the sparsity of the inverse covariance, the
corresponding graph model is fully edged which means that any two pairs
of the nodes are connected. Therefore, the solution to (3) is the classical
maximum likelihood estimate S. Plugging S into (2), we obtain the classical
Markowitz strategy. While if � = �, then the constraint forces �̂  to be
diagonal, implying the asset returns are mutually independent. The
corresponding graph model consists of isolated nodes without any links.
The estimate of covariance S from (3) is diagonal, resulting the strategy
based on diagonal S is similar to 1/N strategy but adjusted according to the
estimates of variances of the asset returns.

Proposition 2: If N asset returns are multivariate normally distributed,
then the returns ri and rj are conditionally independent if and only if the ij th

element in the inverse covariance matrix � is zero.
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This proposition explains the relationship between conditional
independence and zeros in the inverse covariance matrix �–1. For normal
random variables, their third and higher-order joint cumulants which are
defined as the natural logarithm of the moment-generating function are
identically zero, therefore conditional dependence among them is expressed
through their partial correlations, calculated from �–1. So ri and rj are
independent conditional on all the other returns if and only if their partial
correlation is zero. For details of calculating partial correlations from �–1

can be found in appendix B.
Proposition 3: There exists a local optimizer �̂  for the penalized

loglikelihood (3) optimization problem with a certain rate of convergence.

If �ij = 0, then ˆ( 0) 1ijPr � � � , and other elements of �̂  have the same
limiting distribution as the maximum likelihood estimator on the true
covariance matrix.

Proposition 3 was proved under some mild conditions by Lam and Fan
(2009), indicating that the constrained estimator of covariance selects the
right graph with probability tending to one and at the same time gives a
root-n consistent estimator of the precision matrix.

4. Out-of-Sample Evaluation

4.1. Benchmarks and Criterion for Comparison

In this paper, we chose 7 popular strategies as benchmarks and compare
the performance of these strategies with the proposed strategy in this paper.
1/N strategy allocates all the money equally among different assets. MINU
and MINC are strategies without and with short-sales constraints
respectively. LWid strategy is based on shrinkage covariance estimates which
are combinations of the empirical covariance estimator and the identity
matrix (Ledoit and Wolf (2004)). LWif strategy is similar to LWid, but applies
the covariance matrix corresponding to a one-factor model for the asset
returns as the shrinkage target (Ledoit and Wolf (2003)). KDMid strategy is
based on shrinkage inverse covariance estimates which are combinations
of the empirical inverse covariance estimator and the identity matrix
(Kourtis, Dotsis and Markellos (2012)). KDMif strategy is similar to KDMid,
but chooses the inverse covariance matrix estimator resulting from the one-
factor model for the asset returns as the shrinkage target (Kourtis, Dotsis
and Markellos (2012)). SICP strategy proposed in this paper represents
portfolios selected based on sparse inverse covariance matrix estimates.

We used “rolling widow” method to calculate the out-of sample
performance for the above different strategies. The window width was
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chosen to be 120 month, which is 10 years. we tested 180 months and 60
months also to show the results are robust. Let � denote the window width,
T to be the overall observations. For t = �, � + 1, ..., T – 1, we use the data
points in the window [t – � + 1, t] to calculate the optimal portfolio weights
ˆ tw  and estimate the out-of-sample performance as follows.

�̂ = 
1

( ) 1
1 ˆ ,

T

i t
t

w r
T

�

�
��� ��

�
(4)

2�̂ = 
1

2
( ) 1

1 ˆ ˆ( ) ,
1

T

i t
t

w r
T

�

�
��

� �
� � � � �

(5)

�SR = 
ˆ
ˆ
�
�

(9)

we also estimate the out-of-sample turnover which is defined as

�
1

2
( ) 1

1 ˆ ˆ ) ,
1

T

i t
t

TO w r
T

�

�
��

� ��
� � � � �

where 1ˆ tw �  is the desired portfolio weight at t + 1 after rebalancing, and
ˆ

t
w �  is the portfolio weight before rebalancing at t + 1.

4.2. Real Data Analysis

Descriptions of the four real data sets are given in Table 1.

Table 2 presents the out-of-sample Sharpe ratios, variances and
turnovers for the four data sets 10Ind, 30Ind, 100FF, CRSP under different
portfolio strategies. We can see that SICP has the largest out-of-sample
Sharpe ratio for data 10Ind, 30Ind, 100FF, and the second largest for data
CRSP. For data 10Ind, 30Ind, 100FF, other shrinkage methods have similar
Sharpe ratios and generally smaller than those of SICP, though the
differences are not always statistically significant. For data CRSP, SICP has

Table 1: The data sets of monthly asset returns analyzed in this study

No. Data Set Abbreviation N Time period Source

1. Ten industry portfolios 10Ind 10 01/1970-12/2013 K. French
2. Thirty industry portfolios 30Ind 30 01/1970-12/2013 K. French
3. One hundred Portfolios 100FF 100 01/1970-12/2013 K. French
4. One hundred Random Portfolio CRSP 100 12/1971-12/2013 CRSP

a This table lists four data sets of monthly asset returns. The first and second sets are industry
portfolios. The third set is formed on size and book-to-market. The forth set selects 100 stocks
randomly from CRSP (The Center for Research in Security Prices).

b Source: http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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larger Sharpe ratio than other shrinkage strategies and most of the time are
statistically significant. As for out-of-sample variance, SICP has the smallest
variance for data 30Ind, 100FF, CRSP and the second smallest for data 10Ind,
the differences are often statistically significant. In addition, the turnover
values for SICP are often smaller compared other shrinkage strategies for
10Ind and 30Ind. However, for data 100Ind and CRSP, the turnover values
for SICP are bigger than shrinkage strategy which shrink covariance or
inverse covariance to the identity matrix, but smaller than that of the strategy
which shrink the covariance and inverse covariance based on the market
factor model.

The graph structure of applying SICP to data 10Ind is shown in
Figure 2, for 15 different values of the penalty parameter � in equation (3).
We can see that the graph structure is becoming more sparser with the
decrement of L1 norm of the inverse covariance matrix. The extent of sparsity
is determined according to the out-of-sample performance of the portfolio
described in section 2.2.

4.3. Simulation Study

This section investigates the out-of-sample performance by simulation
study. We generate data based on factor models. Let ri be the return rate of
asset i, rf be the risk-free return rate, f be factors, and B be the factor loading
matrix. The factor model can be represented as follows,

r = 1rf + Bf + �. (10)

We use one factor f = (Rm – rf )
�, three factors f = (Rm – rf , SMB, HML)�

and five factors f = (Rm – rf , SMB, HML, RMW, CMA)� respectively. Where
Rm is the return of the whole stock market, Rm – rf is the first factor which is
the same as CAPM (capital asset pricing model), SMB is the difference
between the returns on small stocks and big stocks, HML is the difference
between returns of high and low B/M stocks, the above three factors are
the same as Fama and French (1993) 3-factor model. RMW is the difference
between the returns on diversified portfolios of the stocks with robust and
weak profitability, and CMA is the difference between the returns on
diversified portfolios of the stocks of low/conservative and high/aggressive
investment firms. Those two factors are the same with Fama and French
(2015) 5-factor model. In one factor model, the factor loading is normally
distributed with �b = 1.077, �b = 0.034, and the factor is normally distributed
with �f = (8/12)% and �f = (16/ (12))%  which is similar as MacKinlay and
Pástor (2000). In 3-factor model, the factor loadings are normally distributed
with �b = (1.085, 0.489, 0.365) and
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0.010 0.001 0.001
0.001 0.250 0.011

0.001 0.011 0.204
b

� �� �
� �� � �� �
� �
� �

The 3 factors are normally distributed with �f = (0.488, 0.195, 0.484) and

Figure 2: Solution paths of several norm constrained portfolios.
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In 5-factor model, the factor loadings are normally distributed with �b
= (1.073, 0.521, 0.343, 0.026, –0.078) and

0.011 0.008 0.001 0.015 0.016
0.008 0.260 0.049 0.046 0.096
0.001 0.049 0.163 0.016 0.011

0.015 0.046 0.016 0.125 0.115
0.016 0.096 0.011 0.115 0.167
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The 5 factors are normally distributed with �f = (0.495, 0.230, 0.484, 0.294,
0.400) and

20.819 3.179 6.322 1.975 4.394
3.179 10.317 1.741 2.959 0.465
6.321 1.741 9.450 1.470 4.692
1.975 2.959 1.470 5.597 0.097
4.394 0.465 4.692 0.097 4.405

f

� � �� �
� �� � �� �
� �� �� �
� �� � �� �
� �� � �� �

We generate T = 10120 monthly returns for N = 10, 30, 100 assets based
on one, three and five factor models respectively. The out-of-sample
performance are measured by rolling window method and window width
� is set to be 120 months, which are the same as empirical data analysis.
The out-of-sample Sharpe ratios, Variances and Turnovers based on
different simulated data sets are presented on table 3, table 4 and table 5.
We can see that SICP has the largest out-of-sample Sharpe ratio and relative
lower out-of-sample variance across all data sets for different factor models,
the differences are generally statistically significant. Furthermore, with the
increment of the number of factors and the number of assets, the advantages
of SICP strategy become more and more obvious. Particularly, table 5 shows
that compared with other strategies, SICP strategy increases out-of-sample
Sharpe ratios and decreases out-of-sample variances dramatically and
statistical significantly for the data set N = 100 generated from five factor
model.
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Table 3: Out-of-sample performance measures for simulated data sets
based on onefactor model

Sharpe ratio Variance (×10–3) Turnover

Size 10 30 100 10 30 100 10 30 100

1/N 0.102 0.099 0.110 2.457 2.406 2.325 0.044 0.046 0.046
[0.352] [0.562] [0.187] [0.000] [0.000] [0.000] [ – ] [ – ] [ – ]

MINU 0.066 0.034 0.013 2.028 1.823 4.699 0.097 0.264 2.509
[0.021] [0.025] [0.174] [0.065] [0.000] [0.000] [ – ] [ – ] [ – ]

MINC 0.086 0.071 0.085 2.101 1.835 1.633 0.064 0.088 0.125
[0.268] [0.087] [0.088] [0.000] [0.000] [0.000] [ – ] [ – ] [ – ]

LWid 0.102 0.099 0.110 2.457 2.406 2.324 0.091 0.233 0.046
[0.366] [0.559] [0.185] [0.209] [0.002] [0.000] [ – ] [ – ] [ – ]

LWif 0.066 0.050 0.033 2.019 1.611 0.899 0.090 0.167 0.258
[0.013] [0.011] [0.001] [0.119] [0.549] [0.000] [ – ] [ – ] [ – ]

KDMid 0.101 0.099 0.110 2.457 2.399 2.312 0.097 0.264 0.198
[0.361] [0.526] [0.022] [0.000] [0.500] [0.000] [ – ] [ – ] [ – ]

KDMif 0.102 0.050 0.032 2.457 1.613 0.899 0.091 0.168 0.258
[0.320] [0.016] [0.002] [0.090] [0.050] [0.000] [ – ] [ – ] [ – ]

SICP 0.101 0.099 0.110 2.438 2.392 2.280 0.072 0.143 0.203
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [ – ] [ – ] [ – ]

a The numbers in square brackets are p-values of the portfolio Sharpe ratios and variances for
a strategy is different from that for SICP strategy. The p-values are computed using the
stationary bootstrap method proposed by Ledoit and Wolf (2008).

4.4. Conclusion

Many approaches had been proposed to solve the problem of estimation
risk in GMV portfolio optimization. Among them, shrinking the covariance
matrix or inverse covariance matrix to a particular target has been used.
The targets are selected according to the financial theory and there is no
consensus on the target matrix. In this paper, we propose to shrink the
inverse covariance matrix to a sparse matrix. The sparsity structure of the
inverse covariance matrix are determined by out-of-sample performances.
Specifically, we use the tuning parameter � in the penalized likelihood to
adjust the sparsity structure of the inverse covariance matrix estimates, the
criterion for choosing the value of � is the out-of-sample Sharpe ratios,
variances and turnovers of the portfolios. The main advantage of our new
method is that it is totally data driven. Furthermore, it has been approved
that the zeros in the inverse covariance matrix imply that the corresponding
asset returns are independent given the other asset returns if the asset
returns are normally distributed. Therefore it makes sense to impose sparsity
constraints to the inverse covariance matrix. With different values of the
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Table 5: Out-of-sample performance measures for simulated data sets based on
fivefactor model

Sharpe ratio Variance (×10–3) Turnover

Size 10 30 100 10 30 100 10 30 100

1/N 0.063 0.095 0.136 2.736 2.599 2.851 0.045 0.047 0.048
[0.874] [0.418] [0.096] [0.000] [0.000] [0.000] [ – ] [ – ] [ – ]

MINU 0.064 0.093 0.053 1.855 1.814 6.804 0.104 0.308 3.171
[0.702] [0.341] [0.005] [0.751] [0.482] [0.000] [ – ] [ – ] [ – ]

MINC 0.056 0.094 0.124 2.031 2.177 2.087 0.044 0.092 0.139
[0.38] [0.223] [0.003] [0.000] [0.000] [0.064] [ – ] [ – ] [ – ]

LWid 0.065 0.095 0.136 1.852 1.952 2.851 0.099 0.249 0.048
[0.76] [0.059] [0.090] [0.473] [0.000] [0.000] [ – ] [ – ] [ – ]

LWif 0.062 0.103 0.129 1.821 1.57 1.397 0.089 0.198 0.334
[0.479] [0.665] [0.297] [0.054] [0.000] [0.000] [ – ] [ – ] [ – ]

KDMid 0.064 0.096 0.139 1.855 2.529 2.687 0.104 0.046 0.190
[0.695] [0.463] [0.143] [0.768] [0.000] [0.000] [ – ] [ – ] [ – ]

KDMif 0.064 0.094 0.095 1.857 1.607 2.099 0.104 0.211 0.899
[0.669] [0.338] [0.063] [0.849] [0.000] [0.437] [ – ] [ – ] [ – ]

SICP 0.066 0.109 0.155 1.861 1.853 2.009 0.088 0.170 0.104
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [ – ] [ – ] [ – ]

a The numbers in square brackets are p-values of the portfolio Sharpe ratios and variances for
a strategy is different from that for SICP strategy. The p-values are computed using the
stationary bootstrap method proposed by Ledoit and Wolf (2008).

Table 4: Out-of-sample performance measures for simulated data sets based on
threefactor model

Sharpe ratio Variance (×10–3) Turnover

Size 10 30 100 10 30 100 10 30 100

1/N 0.119 0.097 0.136 1.675 2.671 2.868 0.038 0.037 0.048
[0.518] [0.464] [0.007] [0.000] [0.000] [0.000] [ – ] [ – ] [ – ]

MINU 0.115 0.056 0.078 1.434 0.304 6.262 0.153 0.639 3.082
[0.444] [0.075] [0.003] [0.190] [0.000] [0.000] [ – ] [ – ] [ – ]

MINC 0.119 0.108 0.003 1.627 1.927 1.978 0.05 0.088 0.134
[0.969] [0.661] [0.003] [0.000] [0.000] [0.000] [ – ] [ – ] [ – ]

LWid 0.119 0.105 0.136 1.449 1.154 2.868 0.09 0.251 0.048
[0.985] [0.064] [0.007] [0.002] [0.000] [0.000] [ – ] [ – ] [ – ]

LWif 0.115 0.105 0.136 1.430 0.537 1.373 0.130 0.319 0.321
[0.071] [0.096] [0.005] [0.038] [0.000] [0.000] [ – ] [ – ] [ – ]

KDMid 0.115 0.100 0.141 1.434 1.976 2.678 0.153 0.087 0.189
[0.455] [0.497] [0.013] [0.189] [0.000] [0.000] [ – ] [ – ] [ – ]

KDMif 0.110 0.106 0.105 1.438 1.332 1.966 0.154 0.391 0.820
[0.038] [0.048] [0.022] [0.000] [0.000] [0.000] [ – ] [ – ] [ – ]

SICP 0.119 0.115 0.188 1.420 1.067 1.715 0.107 0.228 0.167
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000] [ – ] [ – ] [ – ]

a The numbers in square brackets are p-values of the portfolio Sharpe ratios and variances for
a strategy is different from that for SICP strategy. The p-values are computed using the
stationary bootstrap method proposed by Ledoit and Wolf (2008).
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tuning parameter �, different portfolio optimization strategies are derived,
for example, naive strategy 1/N and classical plug-in strategy are shown
to be the special cases of our new method. Last but not the least, empirical
data analysis and simulation studies show that new strategies usually have
better out-of-sample performances in terms of Sharpe ratios, variances and
turnovers, and often statistically significant, especially when the number
of the assets is large.
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Appendix A: The Algorithm

Friedman et al. (2007) developed an algorithm which is called graphical
lasso to solve the convex optimization problem

log det� – tr(S �) – ������1 (A1)

where � = �–1, S is the empirical covariance matrix, tr denotes the trace,
�����1 is the L1 norm or the sum of the absolute values of the elements of �–1

and � is the penalty coefficient.

Let W be the estimate of �, partitioning W and S as following:

11 12 11 12

12 12 12 12

 T T

W S s
W S

s s
�� � � �

� �� � � �� �� � � �

The details of graphical lasso algorithm are as following:

1. Initialize W = S + ��� I, I is the identity matrix. The diagonal of W remains
unchanged in what follows.

2. Repeat for j = 1, 2, ...p, 1, 2, ...p, . until convergence:

• Partition the matrixW into part 1: all but the j th row and column,
and part 2: the j th row and column.

• Solve the estimating equations W11� – s12 + ��� Sign(�) = 0 using the
cyclical coordinate-decent algorithm (A2) for deriving the estimate

of �. Specifically, let V = W11 update ˆ
j�  by

12
ˆ ˆ ,j j k j k jj

k j

S s V V
�

� �� � � � �� �� �
� (A2)

for j = 1, 2, ..., p – 1, ..., where S is the soft-threshold operator:

S(x, t) = sign(x)(�x� – t)+

• Update �12 = 11
ˆW � .

3. In the final cycle (for each j) solve for 12 22
ˆ ˆ ,� � �� ��  with 22

ˆ1/�  =

22 12
ˆT� �� �.

The graphical lasso algorithm is very fast, and can solve a moderately
sparse problem with 1000 nodes in less than a minute.

Appendix B: Proof of proposition 2

Assuming that the asset returns are multivariate normally distributed, we
prove that if the ij th component of � = �–1 is zero, then the i th asset and the
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j th asset are conditionally independent, given the other asset returns. Let R
= (r1, r2, ...rN), we partition R = (RS, R–S), where RS = (ri, rj), �1 � i, j � N, R–S
contains the remaining asset returns. The partial covariance between asset
i and asset j conditional on the remaining asset returns is

�ij �–S = �SS – �S,–S�
–1
–S,–S�–S,S

The partial correlation coefficient �ij�–S can be computed from the above
partial covariance.

�ij �–S = 1/2( )
ij S

ij S jj S

�

� �

�

� �

= 

1
, ,

1/2
, , , , , ,{( )( )}

ij i S S S Sj

ii i S S S S i ij j S S S S j

�
� � � �
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� � � � �

� � � � � � � � � � (A3)

Based on Cramer’s rule in linear algebra, the (i, j) element of �–1 is (–
1)i+j�ij/���, where �ij defined as the (i, j) minor of � is the determinant of the
submatrix formed by deleting the i-th row and the j-th column. The
“correlationized” version of �–1 is (–1)i+j�ij/(�ii�jj)

1/2.

According to the formula

11 12 1
11 12 22 21 22

21 22

A A
A A A A A

A A
�� � �

for the determinant of a partitioned matrix for which A–1
22 exists. By making

the row and column interchanges that bring �ii to the (1, 1) position of �–i,–

i , we derive that

�ii = 
,2( 1)

, ,

( 1) ii i Si
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similarly, we can get the expression for �jj , while �ij is as follows:

�ij = 
,1)

, ,

( 1)
ij i Si j

S j S S

�� �

� � �

� �
�

� �

= (–1)i+j–1(�i,j – �i,–S�
–1
–S,–S�–S,j )��–S,–S�

Substituting the expressions for �ii, �jj and �ij into (–1)i+j�ij/(�ii�jj )
1/2, we

derive that the (i, j) element of the “correlationalized” version of �–1 equals
–�ij�S as in equation (A3).




